Server-side request forgery (SSRF) in Web App Penetration Testing | 2023

Understanding the Concept of SSRF in Web Application Penetration Testing for Bug Bounty | Karthikeyan Nagaraj

Karthikeyan Nagaraj
3 min readSep 26, 2023

What is SSRF?

Server-side request forgery is a web security vulnerability that allows an attacker to cause the server-side application to make requests to an unintended location.

In a typical SSRF attack, the attacker might cause the server to make a connection to internal-only services within the organization’s infrastructure. In other cases, they may be able to force the server to connect to arbitrary external systems. This could leak sensitive data, such as authorization credentials.

What is the impact of SSRF attacks?

A successful SSRF attack can often result in unauthorized actions or access to data within the organization. This can be in the vulnerable application, or on other back-end systems that the application can communicate with. In some situations, the SSRF vulnerability might allow an attacker to perform arbitrary command execution.

An SSRF exploit that causes connections to external third-party systems might result in malicious onward attacks. these can appear to originate from the organization hosting the vulnerable application.

Common SSRF attacks

SSRF attacks often exploit trust relationships to escalate an attack from the vulnerable application and perform unauthorized actions. These trust relationships might exist in relation to the server, or in relation to other back-end systems within the same organization.

SSRF attacks against the server

In an SSRF attack against the server, the attacker causes the application to make an HTTP request back to the server that is hosting the application, via its loopback network interface. This typically involves supplying a URL with a hostname like (a reserved IP address that points to the loopback adapter) or localhost (a commonly used name for the same adapter).

For example, imagine a shopping application that lets the user view whether an item is in stock in a particular store. To provide the stock information, the application must query various back-end REST APIs. It does this by passing the URL to the relevant back-end API endpoint via a front-end HTTP request. When a user views the stock status for an item, their browser makes the following request:

POST /product/stock HTTP/1.0 
Content-Type: application/x-www-form-urlencoded
Content-Length: 118


This causes the server to make a request to the specified URL, retrieve the stock status, and return this to the user.

In this example, an attacker can modify the request to specify a URL local to the server:

POST /product/stock HTTP/1.0 Content-Type: application/x-www-form-urlencoded Content-Length: 118 stockApi=http://localhost/admin

The server fetches the contents of the /admin URL and returns it to the user.

An attacker can visit the /admin URL, but the administrative functionality is normally only accessible to authenticated users. This means an attacker won't see anything of interest. However, if the request to the /admin URL comes from the local machine, the normal access controls are bypassed. The application grants full access to the administrative functionality, because the request appears to originate from a trusted location.



Karthikeyan Nagaraj

Security Researcher | Bug Hunter | Web Pentester | CTF Player | TryHackme Top 1% | AI Researcher | Blockchain Developer